πŸ”΄ C1-C2 | πŸ€– Π˜ΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ ΠΈ Π±ΡƒΠ΄ΡƒΡ‰Π΅Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ

πŸ”΄ C1-C2 | πŸ€– Π˜ΡΠΊΡƒΡΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ ΠΈ Π±ΡƒΠ΄ΡƒΡ‰Π΅Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ

Π£Ρ€ΠΎΠΊ английского языка уровня C1-C2 (Advanced) посвящСн Ρ‚Π΅ΠΌΠ΅ искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° ΠΈ Π±ΡƒΠ΄ΡƒΡ‰Π΅Π³ΠΎ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ акадСмичСский тСкст ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ИИ ΠΈ Π΅Π³ΠΎ влиянии Π½Π° общСство, ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ Ρ‚Π΅Ρ…Π½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΈ Ρ„ΠΈΠ»ΠΎΡΠΎΡ„ΡΠΊΡƒΡŽ лСксику, Π°Π½Π°Π»ΠΈΠ· идиоматичСских Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ грамматичСский Ρ€Π°Π·Π±ΠΎΡ€ языка хСдТирования (hedging language), ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π² Π½Π°ΡƒΡ‡Π½ΠΎΠΌ дискурсС. ΠŸΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ для ΠΏΡ€ΠΎΠ΄Π²ΠΈΠ½ΡƒΡ‚Ρ‹Ρ… учащихся, ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΡƒΡŽΡ‰ΠΈΡ…ΡΡ тСхнологиями, философиСй Π½Π°ΡƒΠΊΠΈ ΠΈ этичСскими вопросами тСхнологичСского развития.

πŸ“„ ΠžΡ‚Ρ€Ρ‹Π²ΠΎΠΊ ΠΈΠ· ΡΡ‚Π°Ρ‚ΡŒΠΈ "Beyond Binary Thinking: Navigating the Nuanced Reality of Artificial Intelligence"

The trajectory of artificial intelligence has confounded even the most prescient of technology forecasters. Where previous generations of AI researchers labored to explicitly encode human knowledge into rigid rule-based systems, today's machine learning approaches have taken an entirely different tack. Rather than meticulously programming every conceivable scenario, contemporary models ingest vast troves of data, from which they discern patterns and generate probabilistic outputs that often appear uncannily human-like in their sophistication.

Had early AI pioneers glimpsed modern neural networks and their capabilities, they might well have declared victory prematurely. Yet most experts in the field would caution against anthropomorphizing these systems, sophisticated though they may be. Were one to examine the nature of machine intelligence closely, one would find it fundamentally dissimilar to human cognition. While a child might grasp the concept of gravity from a single dropped apple, machine learning systems typically require thousands of examples to identify similar physical principles – and even then, they lack the intuitive understanding that comes naturally to humans.

This distinction has profound implications for how we integrate AI into our societal frameworks. The deployment of these technologies across critical domains – from healthcare diagnostics to judicial decision-making – has proceeded with varying degrees of oversight and critical examination. Should we continue to implement these systems without robust ethical guardrails, we might inadvertently encode existing biases and inequities into the very infrastructure meant to transcend human limitations.

Researchers have demonstrated that machine learning systems, far from being objective computational entities, readily absorb and amplify the biases inherent in their training data. In one notable instance, a recruitment algorithm developed by a major technology company was found to systematically disadvantage female applicants, having been trained on historical hiring patterns that reflected decades of gender discrimination. The algorithm, in effect, learned to perpetuate rather than ameliorate existing inequities – a sobering reminder that artificial intelligence does not automatically equate to artificial wisdom.

The notion that technological advancement inevitably leads to social progress is but one of many techno-deterministic fallacies that have colored discussions around AI. History bears witness to myriad technologies that, while ingenious in design, proved pernicious in application. The atomic bomb stands as perhaps the most sobering testament to how scientific breakthroughs, divorced from ethical considerations, can cast long shadows over human civilization.

This is not to suggest that we ought to adopt a neo-Luddite stance toward artificial intelligence. Rather, it behooves us to approach these technologies with a nuanced perspective that neither overestimates their current capabilities nor underestimates their potential impact. The most thoughtful commentators in this domain acknowledge that AI systems exist on a spectrum of sophistication and autonomy, with each implementation warranting its own careful consideration of benefits and risks.

As we stand at this technological inflection point, it remains to be seen whether our collective wisdom will keep pace with our computational ingenuity. The path forward likely lies not in sweeping declarations about artificial intelligence as either panacea or existential threat, but in developing frameworks that acknowledge both the remarkable utility of these tools and the profound responsibility their deployment entails. Were we to proceed with appropriate humility about the limits of our understanding – both of artificial systems and of our own cognition – we might yet harness these technologies in service of genuinely human flourishing.

πŸ“š ΠšΠ»ΡŽΡ‡Π΅Π²Π°Ρ лСксика

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Ρ‹ ΠΈ выраТСния

Английский Русский
to confound [kΙ™nˈfaʊnd] ΠΎΠ·Π°Π΄Π°Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ, ΡΠ±ΠΈΠ²Π°Ρ‚ΡŒ с Ρ‚ΠΎΠ»ΠΊΡƒ – The rapid development of quantum computing has confounded even experienced technologists.
prescient [ˈpresiΙ™nt] ΠΏΡ€ΠΎΠ·ΠΎΡ€Π»ΠΈΠ²Ρ‹ΠΉ, прСдвидящий Π±ΡƒΠ΄ΡƒΡ‰Π΅Π΅ – Her prescient analysis of digital privacy concerns proved remarkably accurate a decade later.
to labor [ˈleΙͺbΙ™] Ρ‚Ρ€ΡƒΠ΄ΠΈΡ‚ΡŒΡΡ, ΠΏΡ€ΠΈΠ»Π°Π³Π°Ρ‚ΡŒ усилия – Early programmers labored for months to create what modern systems can accomplish in seconds.
to encode [ΙͺnˈkΙ™ΚŠd] ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, Π²ΡΡ‚Ρ€Π°ΠΈΠ²Π°Ρ‚ΡŒ – Biases can be unintentionally encoded into algorithms through training data.
to take a different tack [teΙͺk Ι™ ˈdΙͺfrΙ™nt tæk] Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, ΡΠΌΠ΅Π½ΠΈΡ‚ΡŒ курс – After unsuccessful results, the research team took a different tack by focusing on unsupervised learning.
to ingest [ΙͺnˈdΚ’est] ΠΏΠΎΠ³Π»ΠΎΡ‰Π°Ρ‚ΡŒ, ΡƒΡΠ²Π°ΠΈΠ²Π°Ρ‚ΡŒ – Modern AI systems ingest petabytes of text data during their training phase.
trove [trΙ™ΚŠv] сокровищница, Ρ†Π΅Π½Π½Ρ‹ΠΉ Π½Π°Π±ΠΎΡ€ – The researchers gained access to a trove of previously unpublished experimental results.
to discern [dΙͺˈsɜːn] Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒ, Ρ€Π°ΡΠΏΠΎΠ·Π½Π°Π²Π°Ρ‚ΡŒ – Advanced algorithms can discern subtle patterns that human analysts might miss.
uncannily [ʌnˈkænΙͺli] ΠΆΡƒΡ‚ΠΊΠΎΠ²Π°Ρ‚ΠΎ, ΡΠ²Π΅Ρ€Ρ…ΡŠΠ΅ΡΡ‚Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎ – The AI generated text that uncannily resembled the author's distinctive writing style.
to anthropomorphize [ˌænθrΙ™pΙ™ΛˆmɔːfaΙͺz] ΠΎΡ‡Π΅Π»ΠΎΠ²Π΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ, Π½Π°Π΄Π΅Π»ΡΡ‚ΡŒ чСловСчСскими качСствами – People tend to anthropomorphize AI assistants, attributing intentions and emotions to them.
to glimpse [Ι‘lΙͺmps] мСльком ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ – Early computer scientists could only glimpse the potential future applications of their theoretical work.
dissimilar [dΙͺˈsΙͺmΙͺlΙ™] Π½Π΅ΠΏΠΎΡ…ΠΎΠΆΠΈΠΉ, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΉΡΡ – Human creativity and machine generation are fundamentally dissimilar processes.
to grasp [Ι‘rɑːsp] ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΡƒΡ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ ΡΡƒΡ‚ΡŒ – It can be difficult to grasp the complex mathematical principles behind neural networks.
deployment [dΙͺˈplΙ”ΙͺmΙ™nt] Ρ€Π°Π·Π²Π΅Ρ€Ρ‚Ρ‹Π²Π°Π½ΠΈΠ΅, Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ – The deployment of AI in critical infrastructure requires careful security considerations.
inadvertently [ˌΙͺnΙ™dˈvɜːtΙ™ntli] Π½Π΅ΠΏΡ€Π΅Π΄Π½Π°ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ, нСчаянно – Companies may inadvertently create privacy risks when implementing data-hungry algorithms.
guardrail [ΛˆΙ‘Ι‘ΛdreΙͺl] Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠ΅ ΠΎΠ³Ρ€Π°ΠΆΠ΄Π΅Π½ΠΈΠ΅, Π·Π°Ρ‰ΠΈΡ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ – Ethical guardrails are essential when developing AI for sensitive applications.
to transcend [trænˈsend] ΠΏΡ€Π΅Π²ΠΎΡΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ, Π²Ρ‹Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ – The goal of general AI is to transcend the limitations of specialized systems.
to absorb [Ι™bˈzɔːb] ΠΏΠΎΠ³Π»ΠΎΡ‰Π°Ρ‚ΡŒ, Π²ΠΏΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ – Neural networks absorb patterns from training data, including undesirable biases.
to ameliorate [Ι™ΛˆmiːliΙ™reΙͺt] ΡƒΠ»ΡƒΡ‡ΡˆΠ°Ρ‚ΡŒ, ΡΠΌΡΠ³Ρ‡Π°Ρ‚ΡŒ (ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ) – New techniques aim to ameliorate the issue of algorithmic discrimination.
techno-deterministic [ˌteknΙ™ΚŠdΙͺtəːmΙͺˈnΙͺstΙͺk] тСхнодСтСрминистскийTechno-deterministic viewpoints often overlook the social and political aspects of technological change.
fallacy [ˈfælΙ™si] Π·Π°Π±Π»ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅, Π»ΠΎΠΆΠ½ΠΎΠ΅ прСдставлСниС – The idea that technology will solve all social problems is a common fallacy.
pernicious [pΙ™ΛˆnΙͺΚƒΙ™s] ΠΏΠ°Π³ΡƒΠ±Π½Ρ‹ΠΉ, врСдоносный – Some algorithms have had pernicious effects on vulnerable communities.
neo-Luddite [ˌniΛΙ™ΚŠΛˆlʌdaΙͺt] Π½Π΅ΠΎΠ»ΡƒΠ΄Π΄ΠΈΡ‚ (соврСмСнный ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΈΠΊ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ) – Neo-Luddite perspectives can sometimes highlight valid concerns about technological change.
to behoove [bΙͺˈhuːv] Π½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ΡŒ, ΠΏΠΎΠ΄ΠΎΠ±Π°Ρ‚ΡŒ – It behooves technology companies to consider the ethical implications of their products.
inflection point [ΙͺnˈflekΚƒn pΙ”Ιͺnt] ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚, Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΠ΅Ρ€Π΅Π³ΠΈΠ±Π° – The development of large language models represents an inflection point in AI research.

πŸ”€ Π Π°Π·Π±ΠΎΡ€ ΠΈΠ΄ΠΈΠΎΠΌ ΠΈ устойчивых Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ

1. To take a different tack [teΙͺk Ι™ ˈdΙͺfrΙ™nt tæk] (Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, ΡΠΌΠ΅Π½ΠΈΡ‚ΡŒ курс)

"Where previous generations of AI researchers labored to explicitly encode human knowledge into rigid rule-based systems, today's machine learning approaches have taken an entirely different tack."

Π­Ρ‚ΠΎ морская ΠΌΠ΅Ρ‚Π°Ρ„ΠΎΡ€Π°, происходящая ΠΎΡ‚ ΠΌΠ°Π½Π΅Π²Ρ€Π° парусных судов, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½ΠΈ ΠΌΠ΅Π½ΡΡŽΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π΅Ρ‚Ρ€Π° (tack – курс судна ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π΅Ρ‚Ρ€Π°). Π’ пСрСносном смыслС ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΈΠ»ΠΈ стратСгии для достиТСния Ρ†Π΅Π»ΠΈ.

ΠŸΡ€ΠΎΠΈΡΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅: Π’ парусном спортС "tack" ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ двиТСния ΠΏΡ€ΠΎΡ‚ΠΈΠ² Π²Π΅Ρ‚Ρ€Π° ΠΏΡƒΡ‚Π΅ΠΌ Π·ΠΈΠ³Π·Π°Π³ΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΠ³ΠΎ курса ΠΈ смСны галса. Π’ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ ΠΈΠ½ΠΎΠ³Π΄Π° трСбуСтся Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ‚ΡŒ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄, Ссли тСкущая стратСгия Π½Π΅ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹:

  • After years of failing with traditional methods, physicists took a different tack by applying quantum theory to the problem.
  • When direct negotiations stalled, the diplomat took a different tack by suggesting informal discussions.
  • Our marketing wasn't resonating with younger audiences, so we took a completely different tack with our social media strategy.

2. To cast a long shadow [kɑːst Ι™ lΙ’Ε‹ ΛˆΚƒædΙ™ΚŠ] (ΠΈΠΌΠ΅Ρ‚ΡŒ долгосрочныС Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ послСдствия)

"The atomic bomb stands as perhaps the most sobering testament to how scientific breakthroughs, divorced from ethical considerations, can cast long shadows over human civilization."

Π­Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π·Π½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ описываСт ΡΠΈΡ‚ΡƒΠ°Ρ†ΠΈΡŽ, ΠΊΠΎΠ³Π΄Π° Π½Π΅ΠΊΠΎΠ΅ событиС, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ ΠΈΠ·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ влияниС Π½Π° Π±ΡƒΠ΄ΡƒΡ‰Π΅Π΅, ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎ Ρ‚ΠΎΠΌΡƒ, ΠΊΠ°ΠΊ высокий ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ отбрасываСт Π΄Π»ΠΈΠ½Π½ΡƒΡŽ Ρ‚Π΅Π½ΡŒ Π½Π° зСмлю.

ΠšΡƒΠ»ΡŒΡ‚ΡƒΡ€Π½Ρ‹ΠΉ контСкст: ΠœΠ΅Ρ‚Π°Ρ„ΠΎΡ€Π° Ρ‚Π΅Π½ΠΈ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ для обозначСния Ρ‡Π΅Π³ΠΎ-Ρ‚ΠΎ ΠΌΡ€Π°Ρ‡Π½ΠΎΠ³ΠΎ, ΡƒΠ³Ρ€ΠΎΠΆΠ°ΡŽΡ‰Π΅Π³ΠΎ ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Π²ΠΎΠΆΠ½ΠΎΠ³ΠΎ. Π­Ρ‚Π° ΠΈΠ΄ΠΈΠΎΠΌΠ° ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ послСдствия Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… дСйствий ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΡ‰ΡƒΡ‰Π°Ρ‚ΡŒΡΡ Π΄Π°Π»Π΅ΠΊΠΎ Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΈΡ… нСпосрСдствСнного контСкста, ΠΊΠ°ΠΊ Ρ‚Π΅Π½ΡŒ, которая растягиваСтся с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹:

  • The financial crisis of 2008 continues to cast a long shadow over economic policy decisions.
  • His traumatic childhood experiences cast a long shadow over his adult relationships.
  • Colonial policies cast long shadows that still affect international relations today.

3. To stand at an inflection point [stænd æt Ι™n ΙͺnˈflekΚƒn pΙ”Ιͺnt] (Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π½Π° ΠΏΠ΅Ρ€Π΅Π»ΠΎΠΌΠ½ΠΎΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π΅)

"As we stand at this technological inflection point, it remains to be seen whether our collective wisdom will keep pace with our computational ingenuity."

Π­Ρ‚ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈΡˆΠ΅Π΄ΡˆΠ΅Π΅ ΠΈΠ· ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, описываСт критичСский ΠΌΠΎΠΌΠ΅Π½Ρ‚ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°, ΠΊΠΎΠ³Π΄Π° происходит Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ направлСния ΠΈΠ»ΠΈ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΠΈ развития. Π’ контСкстС Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΠ»ΠΈ общСства это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚, послС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΠΆΠΈΠ΄Π°ΡŽΡ‚ΡΡ ΡΠ΅Ρ€ΡŒΠ΅Π·Π½Ρ‹Π΅ измСнСния ΠΈΠ»ΠΈ ускорСниС развития.

ΠŸΡ€ΠΎΠΈΡΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅: Π’ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ "inflection point" (Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΠ΅Ρ€Π΅Π³ΠΈΠ±Π°) – это мСсто Π½Π° ΠΊΡ€ΠΈΠ²ΠΎΠΉ, Π³Π΄Π΅ мСняСтся Π΅Ρ‘ Π²ΠΎΠ³Π½ΡƒΡ‚ΠΎΡΡ‚ΡŒ. ΠœΠ΅Ρ‚Π°Ρ„ΠΎΡ€ΠΈΡ‡Π΅ΡΠΊΠΈ это Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ примСняСтся ΠΊ ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π½Ρ‹ΠΌ ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°ΠΌ Π² истории, Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΠ»ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹:

  • The invention of the internet represented an inflection point in human communication.
  • We are standing at an inflection point in climate policy, where decisions today will determine outcomes for generations.
  • The company stands at an inflection point as it transitions from a startup to a mature organization.

4. To keep pace with [kiːp peΙͺs wΙͺð] (ΠΈΠ΄Ρ‚ΠΈ Π² Π½ΠΎΠ³Ρƒ с, Π½Π΅ ΠΎΡ‚ΡΡ‚Π°Π²Π°Ρ‚ΡŒ)

"As we stand at this technological inflection point, it remains to be seen whether our collective wisdom will keep pace with our computational ingenuity."

Π­Ρ‚ΠΎ идиоматичСскоС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ ΠΈΠ»ΠΈ Ρ€Π°Π·Π²ΠΈΠ²Π°Ρ‚ΡŒΡΡ с Ρ‚ΠΎΠΉ ΠΆΠ΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ, Ρ‡Ρ‚ΠΎ ΠΈ Ρ‡Ρ‚ΠΎ-Ρ‚ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠ΅, Π½Π΅ отставая. Π’ контСкстС Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΎΠ½ΠΎ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для сравнСния скорости тСхнологичСского прогрСсса ΠΈ способности общСства ΠΈΠ»ΠΈ этики Π°Π΄Π°ΠΏΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊ измСнСниям.

ΠŸΡ€ΠΎΠΈΡΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅: Π‘ΡƒΠΊΠ²Π°Π»ΡŒΠ½ΠΎ, "to keep pace" ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΈΠ΄Ρ‚ΠΈ Π² Ρ‚ΠΎΠΌ ΠΆΠ΅ Ρ‚Π΅ΠΌΠΏΠ΅, Ρ‡Ρ‚ΠΎ ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠΉ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ ΠΈΠ»ΠΈ Π³Ρ€ΡƒΠΏΠΏΠ°. Π­Ρ‚Π° физичСская ΠΌΠ΅Ρ‚Π°Ρ„ΠΎΡ€Π° Ρ€Π°ΡΡˆΠΈΡ€ΠΈΠ»Π°ΡΡŒ Π΄ΠΎ абстрактных понятий развития ΠΈ прогрСсса.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹:

  • Regulatory frameworks often struggle to keep pace with rapidly evolving technologies.
  • Small businesses must innovate to keep pace with changing consumer expectations.
  • Educational curricula need constant updates to keep pace with developments in science and technology.

5. In service of [Ιͺn ˈsɜːvΙͺs Ι’v] (Π½Π° слуТбС Ρƒ, Π² цСлях, для ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ)

"Were we to proceed with appropriate humility about the limits of our understanding... we might yet harness these technologies in service of genuinely human flourishing."

Π­Ρ‚ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‡Ρ‚ΠΎ-Ρ‚ΠΎ дСлаСтся с Ρ†Π΅Π»ΡŒΡŽ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ, продвиТСния ΠΈΠ»ΠΈ содСйствия ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ Ρ†Π΅Π»ΠΈ ΠΈΠ»ΠΈ ΠΈΠ΄Π΅Π°Π»Ρƒ. Π’ контСкстС Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΎΠ½ΠΎ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для обсуТдСния этичного примСнСния ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΉ для ΠΎΠ±Ρ‰Π΅Π³ΠΎ Π±Π»Π°Π³Π°.

ΠšΡƒΠ»ΡŒΡ‚ΡƒΡ€Π½Ρ‹ΠΉ контСкст: Π­Ρ‚Π° Ρ„Ρ€Π°Π·Π° ΠΎΡ‚Ρ€Π°ΠΆΠ°Π΅Ρ‚ идСю ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΡΠ»ΡƒΠΆΠΈΡ‚ΡŒ чСловСчСским цСлям ΠΈ цСнностям, Π° Π½Π΅ Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚. Она часто встрСчаСтся Π² этичСских дискуссиях ΠΎ Ρ†Π΅Π»ΠΈ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ тСхнологичСского развития.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹:

  • The research program was designed in service of improving public health outcomes.
  • These policies were implemented in service of greater economic equality.
  • Technology should be developed in service of human needs, not merely for profit.

πŸ”Ž Π Π°Π·Π±ΠΎΡ€ слоТных языковых конструкций

1. "Had early AI pioneers glimpsed modern neural networks and their capabilities, they might well have declared victory prematurely."

Π­Ρ‚ΠΎ условноС ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ Ρ‚ΠΈΠΏΠ° (third conditional) с инвСрсиСй. ВмСсто стандартной Ρ„ΠΎΡ€ΠΌΡ‹ "If early AI pioneers had glimpsed..." ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ инвСрсия "Had early AI pioneers glimpsed...". Π­Ρ‚ΠΎ Π±ΠΎΠ»Π΅Π΅ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ, Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹ΠΉ ΡΡ‚ΠΈΠ»ΡŒ. Π’Π°ΠΊΠΆΠ΅ здСсь ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ„Ρ€Π°Π·Π° "might well have", которая усиливаСт Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ гипотСтичСского Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°.

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π°: Had + ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ + past participle + Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅, ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ + might well have + past participle + Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅

"Had the researchers understood the implications of their discovery, they might well have pursued a different line of inquiry."

"Had society anticipated the impact of social media, we might have established stronger privacy protections earlier."

2. "Were one to examine the nature of machine intelligence closely, one would find it fundamentally dissimilar to human cognition."

Π—Π΄Π΅ΡΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΡΡƒΠ±ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ² (ΡΠΎΡΠ»Π°Π³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅) Π² условном ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠΈ с "were" ΠΈ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅, Π±Π΅Π·Π»ΠΈΡ‡Π½ΠΎΠ΅ ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ "one". Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Π°Ρ конструкция, характСрная для акадСмичСского письма. ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΈΠ½Π²Π΅Ρ€ΡΠΈΡŽ "Were one to" вмСсто "If one were to".

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π°: Were + one + to + ΠΈΠ½Ρ„ΠΈΠ½ΠΈΡ‚ΠΈΠ² + Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅, one would + ΠΈΠ½Ρ„ΠΈΠ½ΠΈΡ‚ΠΈΠ² + it + ΠΏΡ€ΠΈΠ»Π°Π³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ + прСдлоТная Ρ„Ρ€Π°Π·Π°

"Were one to analyze the history of technological progress, one would observe recurring patterns of disruption and adaptation."

"Were one to compare quantum and classical computing approaches, one would discover fundamental differences in processing paradigms."

3. "Should we continue to implement these systems without robust ethical guardrails, we might inadvertently encode existing biases and inequities into the very infrastructure meant to transcend human limitations."

Π­Ρ‚ΠΎ условноС ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ с ΠΌΠΎΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΌ Π³Π»Π°Π³ΠΎΠ»ΠΎΠΌ "should" Π² Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ "if", Ρ‡Ρ‚ΠΎ создаСт Π±ΠΎΠ»Π΅Π΅ Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ Π·Π²ΡƒΡ‡Π°Π½ΠΈΠ΅. Π—Π΄Π΅ΡΡŒ Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π½Π°Ρ€Π΅Ρ‡ΠΈΠ΅ "inadvertently" (Π½Π΅ΠΏΡ€Π΅Π΄Π½Π°ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ) для смягчСния утвСрТдСния ΠΈ Ρ„Ρ€Π°Π·Π° "the very infrastructure meant to", которая ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ ΠΈΡ€ΠΎΠ½ΠΈΡŽ ситуации.

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π°: Should + ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ + ΠΈΠ½Ρ„ΠΈΠ½ΠΈΡ‚ΠΈΠ² + Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ + without + ΠΏΡ€ΠΈΠ»Π°Π³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ + ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅, ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ + might + Π½Π°Ρ€Π΅Ρ‡ΠΈΠ΅ + ΠΈΠ½Ρ„ΠΈΠ½ΠΈΡ‚ΠΈΠ² + Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ + into + Ρ„Ρ€Π°Π·Π° с "the very"

"Should governments fail to regulate AI development appropriately, society might unwittingly cede critical decision-making to unaccountable systems."

"Should researchers ignore the social implications of their work, they could unintentionally create technologies with harmful consequences."

4. "This is not to suggest that we ought to adopt a neo-Luddite stance toward artificial intelligence."

Π­Ρ‚ΠΎ конструкция "not to suggest that" ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для прСдупрСТдСния Π½Π΅ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ утвСрТдСния. Π—Π° Π½Π΅ΠΉ слСдуСт Ρ„Ρ€Π°Π·Π° с ΠΌΠΎΠ΄Π°Π»ΡŒΠ½Ρ‹ΠΌ Π³Π»Π°Π³ΠΎΠ»ΠΎΠΌ "ought to", Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΠΌ ΠΌΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΈΠ»ΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΡŽ. Π­Ρ‚ΠΎ Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ хСдТирования (смягчСния утвСрТдСния) Π² акадСмичСском письмС.

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π°: This is not to suggest that + ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ + ought to + ΠΈΠ½Ρ„ΠΈΠ½ΠΈΡ‚ΠΈΠ² + Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ + toward + ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅

"This is not to imply that scientists should abandon research into artificial general intelligence."

"This is not to argue that technology must be restricted, but rather that it requires thoughtful governance."

5. "Were we to proceed with appropriate humility about the limits of our understanding – both of artificial systems and of our own cognition – we might yet harness these technologies in service of genuinely human flourishing."

Π­Ρ‚ΠΎ слоТноС ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ начинаСтся с условной конструкции с инвСрсиСй "Were we to" (вмСсто "If we were to"), Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΡƒΡ‚ΠΎΡ‡Π½ΡΡŽΡ‰ΡƒΡŽ вставку ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΈΡ€Π΅ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ Π½Π°Ρ€Π΅Ρ‡ΠΈΠ΅ "yet" для ввСдСния элСмСнта Π½Π°Π΄Π΅ΠΆΠ΄Ρ‹, нСсмотря Π½Π° Ρ€Π°Π½Π΅Π΅ описанныС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹. Π€Ρ€Π°Π·Π° "in service of" ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ ΠΏΠΎΠ΄Ρ‡ΠΈΠ½Π΅Π½Π½ΠΎΡΡ‚ΡŒ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ чСловСчСским цСлям.

Π‘Ρ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π°: Were + ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ + to + ΠΈΠ½Ρ„ΠΈΠ½ΠΈΡ‚ΠΈΠ² + прСдлоТная Ρ„Ρ€Π°Π·Π° about + ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ – пояснСниС – ΠΏΠΎΠ΄Π»Π΅ΠΆΠ°Ρ‰Π΅Π΅ + might yet + ΠΈΠ½Ρ„ΠΈΠ½ΠΈΡ‚ΠΈΠ² + Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ + in service of + Π½Π°Ρ€Π΅Ρ‡ΠΈΠ΅ + ΠΏΡ€ΠΈΠ»Π°Π³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ + ΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅

"Were humanity to acknowledge the fragility of our ecosystem – both its physical and social dimensions – we might still prevent the worst consequences of climate change."

"Were researchers to collaborate across disciplines – combining technical expertise with ethical insight – they could potentially develop more beneficial applications."

🧠 Π’Π΅Ρ…Π½ΠΈΠΊΠΈ запоминания Π½ΠΎΠ²Ρ‹Ρ… слов

ΠœΠ΅Ρ‚ΠΎΠ΄ синонимичСских рядов ΠΈ контрастов

Π“Ρ€ΡƒΠΏΠΏΠΈΡ€ΠΎΠ²ΠΊΠ° слов с ΠΏΠΎΡ…ΠΎΠΆΠΈΠΌΠΈ ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΌΠΈ значСниями ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ Π½ΡŽΠ°Π½ΡΡ‹ ΠΈ Ρ‚ΠΎΡ‡Π½Π΅Π΅ ΠΏΠΎΠ΄Π±ΠΈΡ€Π°Ρ‚ΡŒ слово Π² зависимости ΠΎΡ‚ контСкста:

Π‘Π»ΠΎΠ²Π°, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ послСдствия:

  • pernicious [pΙ™ΛˆnΙͺΚƒΙ™s] (ΠΏΠ°Π³ΡƒΠ±Π½Ρ‹ΠΉ) – ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ врСдоносноС воздСйствиС, часто скрытоС ΠΈΠ»ΠΈ постСпСнноС
  • detrimental [ˌdetrΙͺˈmentl] (Π²Ρ€Π΅Π΄Π½Ρ‹ΠΉ) – ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° наносящий ΡƒΡ‰Π΅Ρ€Π± Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€
  • deleterious [ˌdelΙ™ΛˆtΙͺΙ™riΙ™s] (Π²Ρ€Π΅Π΄Π½Ρ‹ΠΉ, Ρ€Π°Π·Ρ€ΡƒΡˆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ) – часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² Π½Π°ΡƒΡ‡Π½ΠΎΠΌ контСкстС
  • injurious [ΙͺnˈdΚ’ΚŠΙ™riΙ™s] (Π²Ρ€Π΅Π΄Π½Ρ‹ΠΉ, наносящий ΡƒΡ‰Π΅Ρ€Π±) – ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΉ Π²Ρ€Π΅Π΄
  • malignant [mΙ™ΛˆlΙͺΙ‘nΙ™nt] (злокачСствСнный) – ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°Π΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²Ρ€Π΅Π΄Π°

Π‘Π»ΠΎΠ²Π°, связанныС с ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ΠΌ:

  • to discern [dΙͺˈsɜːn] (Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒ) – Π°ΠΊΡ†Π΅Π½Ρ‚ Π½Π° выявлСнии Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ ΠΈΠ»ΠΈ распознавании ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½ΠΎΠ²
  • to grasp [Ι‘rɑːsp] (ΠΏΠΎΠ½ΡΡ‚ΡŒ) – ΠΌΠ΅Ρ‚Π°Ρ„ΠΎΡ€Π° физичСского схватывания ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ
  • to comprehend [ˌkΙ’mprΙͺˈhend] (ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ) – ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°Π΅Ρ‚ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠ΅, ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅
  • to fathom [ˈfæðΙ™m] (ΠΏΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒ) – часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для описания понимания слоТных ΠΈΠ»ΠΈ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΡ… ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΉ
  • to apprehend [ˌæprΙͺˈhend] (Π²ΠΎΡΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ, ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ) – Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ слово, ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°ΡŽΡ‰Π΅Π΅ восприятиС

ВыраТСния нСизбСТности ΠΈΠ»ΠΈ Π΄ΠΎΠ»Π³Π°:

  • it behooves [bΙͺˈhuːvz] (Π½Π°Π΄Π»Π΅ΠΆΠΈΡ‚) – Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅, ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ ΠΌΠΎΡ€Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈΠ»ΠΈ практичСский Π΄ΠΎΠ»Π³
  • one ought to [ɔːt tuː] (слСдуСт) – Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΠΌΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ
  • it is incumbent upon [ΙͺnˈkʌmbΙ™nt Ι™ΛˆpΙ’n] (Π²ΠΎΠ·Π»ΠΎΠΆΠ΅Π½ΠΎ Π½Π°) – Ρ„ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅, ΠΏΠΎΠ΄Ρ‡Π΅Ρ€ΠΊΠΈΠ²Π°Π΅Ρ‚ ΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²Π΅Π½Π½ΠΎΡΡ‚ΡŒ
  • one is obliged to [Ι™ΛˆblaΙͺdΚ’d tuː] (обязан) – ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° ΠΎΠ±ΡΠ·Π°Π½Π½ΠΎΡΡ‚ΡŒ, часто внСшнюю
  • one is compelled to [kΙ™mˈpeld tuː] (Π²Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½) – ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°Π΅Ρ‚ сильноС Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π΅ ΠΈΠ»ΠΈ внСшнСС Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅

ΠœΠ΅Ρ‚ΠΎΠ΄ созвучий с русским языком

  • to confound [kΙ™nˈfaʊnd] (ΡΠ±ΠΈΠ²Π°Ρ‚ΡŒ с Ρ‚ΠΎΠ»ΠΊΡƒ) – созвучно с "ΠΊΠΎΠ½Ρ„ΡƒΠ·". ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅, ΠΊΠ°ΠΊ Π²Ρ‹ Π² ΠΊΠΎΠ½Ρ„ΡƒΠ·Π΅ ΠΎΡ‚ слоТного Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ИИ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ сбил вас с Ρ‚ΠΎΠ»ΠΊΡƒ.
  • to discern [dΙͺˈsɜːn] (Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒ) – созвучно с "дисcСртация". Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡƒΠΌΠ΅Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π°Ρ‚ΡŒ (discern) Π²Π°ΠΆΠ½Ρ‹Π΅ ΠΏΠ°Ρ‚Ρ‚Π΅Ρ€Π½Ρ‹ Π² Π΄Π°Π½Π½Ρ‹Ρ… для ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠΉ диссСртации.
  • fallacy [ˈfælΙ™si] (Π·Π°Π±Π»ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅) – созвучно с "Ρ„Π°Π»ΡŒΡˆΡŒ". ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅, ΠΊΠ°ΠΊ Π½Π΅ΠΊΠΎΠ΅ Ρ„Π°Π»ΡŒΡˆΠΈΠ²ΠΎΠ΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π° самом Π΄Π΅Π»Π΅ являСтся Π·Π°Π±Π»ΡƒΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ (fallacy).
  • to behoove [bΙͺˈhuːv] (Π½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ΡŒ) – созвучно с "Π±ΠΈΡ…Π΅Π²ΠΈΠΎΡ€ΠΈΠ·ΠΌ" (Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π² психологии). ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅, ΠΊΠ°ΠΊ бихСвиористу Π½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ (behooves) ΠΈΠ·ΡƒΡ‡Π°Ρ‚ΡŒ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅, Π° Π½Π΅ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ состояния.
  • pernicious [pΙ™ΛˆnΙͺΚƒΙ™s] (ΠΏΠ°Π³ΡƒΠ±Π½Ρ‹ΠΉ) – созвучно с "ΠΏΠ΅Ρ€Π½ΠΈΡ‡Π°Ρ‚ΡŒ" (ΡΠΎΠΏΠ΅Ρ€Π½ΠΈΡ‡Π°Ρ‚ΡŒ). ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅ ΠΏΠ°Π³ΡƒΠ±Π½ΠΎΠ΅ (pernicious) сопСрничСство, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π²Ρ€Π΅Π΄ΠΈΡ‚ ΠΎΠ±Π΅ΠΈΠΌ сторонам.

ΠœΠ΅Ρ‚ΠΎΠ΄ этимологичСских связСй

ПониманиС происхоТдСния слов ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠ΅ ассоциации:

  • to anthropomorphize [ˌænθrΙ™pΙ™ΛˆmɔːfaΙͺz] – ΠΎΡ‚ грСчСских ΠΊΠΎΡ€Π½Π΅ΠΉ "anthropos" (Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ) ΠΈ "morphe" (Ρ„ΠΎΡ€ΠΌΠ°). Π‘ΡƒΠΊΠ²Π°Π»ΡŒΠ½ΠΎ "ΠΏΡ€ΠΈΠ΄Π°Π²Π°Ρ‚ΡŒ Ρ‡Π΅Π»ΠΎΠ²Π΅Ρ‡Π΅ΡΠΊΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒ".
  • to ameliorate [Ι™ΛˆmiːliΙ™reΙͺt] – ΠΎΡ‚ латинского "melior" (Π»ΡƒΡ‡ΡˆΠ΅). РодствСнно словам "мСлиорация" (ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΡ‡Π²Ρ‹) ΠΈ французскому "meilleur" (Π»ΡƒΡ‡ΡˆΠΈΠΉ).
  • prescient [ˈpresiΙ™nt] – ΠΎΡ‚ латинского "praescire", Π³Π΄Π΅ "prae" (Π΄ΠΎ, ΠΏΠ΅Ρ€Π΅Π΄) + "scire" (Π·Π½Π°Ρ‚ΡŒ). Π‘ΡƒΠΊΠ²Π°Π»ΡŒΠ½ΠΎ "Π·Π½Π°ΡŽΡ‰ΠΈΠΉ Π·Π°Ρ€Π°Π½Π΅Π΅".
  • to transcend [trænˈsend] – ΠΎΡ‚ латинского "transcendere", Π³Π΄Π΅ "trans" (Ρ‡Π΅Ρ€Π΅Π·, Π·Π°) + "scandere" (ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Ρ‚ΡŒΡΡ). Π‘ΡƒΠΊΠ²Π°Π»ΡŒΠ½ΠΎ "ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Ρ‚ΡŒΡΡ Π²Ρ‹ΡˆΠ΅, Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹".
  • inflection point [ΙͺnˈflekΚƒn pΙ”Ιͺnt] – ΠΎΡ‚ латинского "inflectere", Π³Π΄Π΅ "in" (Π²) + "flectere" (ΡΠ³ΠΈΠ±Π°Ρ‚ΡŒ). Π’ΠΎΡ‡ΠΊΠ°, Π³Π΄Π΅ линия "сгибаСтся" ΠΈ мСняСт Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅.

⏰ ГрамматичСский фокус: Π―Π·Ρ‹ΠΊ хСдТирования (Hedging Language) Π² Π½Π°ΡƒΡ‡Π½ΠΎΠΌ дискурсС

Π’ акадСмичСском ΠΈ Π½Π°ΡƒΡ‡Π½ΠΎΠΌ дискурсС, особСнно ΠΏΡ€ΠΈ обсуТдСнии слоТных Ρ‚Π΅ΠΌ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ искусствСнный ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚, Π°Π²Ρ‚ΠΎΡ€Ρ‹ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ особыС лингвистичСскиС ΠΏΡ€ΠΈΠ΅ΠΌΡ‹ для выраТСния нСопрСдСлСнности, остороТности ΠΈΠ»ΠΈ ограничСния силы своих ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΉ. Π­Ρ‚ΠΎ называСтся "Ρ…Π΅Π΄ΠΆΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ" (hedging) – своСго Ρ€ΠΎΠ΄Π° лингвистичСская "страховка", которая позволяСт Π΄Π΅Π»Π°Ρ‚ΡŒ утвСрТдСния с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ увСрСнности ΠΈ точности.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ρ…Π΅Π΄ΠΆΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅?

Π₯Π΅Π΄ΠΆΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ (hedging) – это лингвистичСскиС ΠΏΡ€ΠΈΠ΅ΠΌΡ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ для:

  • ВыраТСния остороТности Π² утвСрТдСниях
  • ΠŸΡ€ΠΈΠ·Π½Π°Π½ΠΈΡ ограничСнности своих Π·Π½Π°Π½ΠΈΠΉ
  • БмягчСния катСгоричности высказываний
  • ДСмонстрации акадСмичСской скромности
  • ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΡΡ‚ΠΈ для Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ зрСния

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡ‹ хСдТирования Π² акадСмичСском английском:

1. ΠœΠΎΠ΄Π°Π»ΡŒΠ½Ρ‹Π΅ Π³Π»Π°Π³ΠΎΠ»Ρ‹ нСопрСдСлСнности

ΠœΠΎΠ΄Π°Π»ΡŒΠ½Ρ‹Π΅ Π³Π»Π°Π³ΠΎΠ»Ρ‹ ΠΏΠΎΠΌΠΎΠ³Π°ΡŽΡ‚ Π²Ρ‹Ρ€Π°ΠΆΠ°Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ стСпСни вСроятности ΠΈΠ»ΠΈ возмоТности:

  • may/might: ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ

    "AI systems might eventually develop forms of reasoning that resemble human cognition."

  • could: ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚Π΅ΠΎΡ€Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ

    "These technological developments could have far-reaching implications for privacy."

  • would: для гипотСтичСских ситуаций

    "In such scenarios, autonomous systems would require strict regulatory oversight."

2. ЛСксичСскиС Ρ…Π΅Π΄ΠΆΠΈ

Π­Ρ‚ΠΎ слова ΠΈ Ρ„Ρ€Π°Π·Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ силу утвСрТдСния:

  • appear to, seem to: ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ Π²ΠΈΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ, Π° Π½Π΅ Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒ

    "The algorithm appears to make decisions based on patterns humans cannot easily detect."

  • tend to, typically: ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° ΠΎΠ±Ρ‰ΡƒΡŽ Ρ‚Π΅Π½Π΄Π΅Π½Ρ†ΠΈΡŽ с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌΠΈ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡΠΌΠΈ

    "Machine learning models tend to reflect biases present in their training data."

  • relatively, comparatively: ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΡΡ‚ΡŒ сравнСния

    "Quantum computing remains relatively unexplored for AI applications."

3. ΠžΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΡ‚Π΅Π»ΠΈ (Limiters)

Π­Ρ‚ΠΈ выраТСния ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ примСнСния утвСрТдСния:

  • in most cases, often, sometimes

    "In most cases, explainable AI provides insight into decision-making processes."

  • to some extent, to a certain degree

    "Neural networks can simulate human reasoning to some extent."

  • under certain conditions, in this context

    "Under certain conditions, these systems demonstrate remarkable adaptability."

4. ЭпистСмичСскиС Π³Π»Π°Π³ΠΎΠ»Ρ‹ ΠΈ выраТСния

Π­Ρ‚ΠΈ слова ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ знания ΠΈΠ»ΠΈ увСрСнности:

  • suggest, indicate, imply

    "Research suggests that multimodal systems may offer advantages over text-only models."

  • is believed to, is considered to

    "Reinforcement learning is believed to hold potential for solving complex optimization problems."

  • from our perspective, based on available evidence

    "Based on available evidence, the benefits of this approach outweigh the risks."

5. Π‘Π΅Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ конструкции

Они ΡƒΠ΄Π°Π»ΡΡŽΡ‚ Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π°Π³Π΅Π½Ρ‚Π°, дСлая ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ:

  • it is possible that, there is a tendency to

    "It is possible that future AI systems will require novel governance frameworks."

  • it has been noted that, it can be observed that

    "It has been noted that neural networks extract patterns differently than human experts."

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ хСдТирования ΠΈΠ· тСкста:

"The trajectory of artificial intelligence has confounded even the most prescient of technology forecasters."

Π€Ρ€Π°Π·Π° "even the most prescient" ΠΏΡ€ΠΈΠ·Π½Π°Π΅Ρ‚ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ чСловСчСского прСдвидСния, смягчая ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ утвСрТдСния.

"Had early AI pioneers glimpsed modern neural networks and their capabilities, they might well have declared victory prematurely."

ИспользованиС "might well have" вмСсто "would have" ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Π²Ρ‹ΡΠΎΠΊΡƒΡŽ, Π½ΠΎ Π½Π΅ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΡƒΡŽ, Π²Π΅Ρ€ΠΎΡΡ‚Π½ΠΎΡΡ‚ΡŒ.

"Most experts in the field would caution against anthropomorphizing these systems, sophisticated though they may be."

Π€Ρ€Π°Π·Π° "would caution against" мягчС, Ρ‡Π΅ΠΌ "reject" ΠΈΠ»ΠΈ "forbid", Π° "though they may be" ΠΏΡ€ΠΈΠ·Π½Π°Π΅Ρ‚ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ ΠΊΠΎΠ½Ρ‚Ρ€Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρ‹.

"Should we continue to implement these systems without robust ethical guardrails, we might inadvertently encode existing biases..."

ИспользованиС "should we continue" (вмСсто "if we continue") ΠΈ "might inadvertently" (вмСсто "will") смягчаСт ΠΊΡ€ΠΈΡ‚ΠΈΠΊΡƒ ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΠΎΡΡ‚ΠΎΡ€ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Π² прСдсказаниях.

Когда ΠΈ ΠΊΠ°ΠΊ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ…Π΅Π΄ΠΆΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅:

  1. ΠŸΡ€ΠΈ обсуТдСнии Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² исслСдований:

    "The data suggest a correlation between algorithm complexity and performance, although further research is needed."

  2. ΠŸΡ€ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π³ΠΈΠΏΠΎΡ‚Π΅Π·:

    "It seems reasonable to propose that consciousness requires more than computational capacity."

  3. ΠŸΡ€ΠΈ обсуТдСнии ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ²Ρ‹Ρ… вопросов:

    "While some researchers argue that AI presents existential risks, others maintain that such concerns are premature."

  4. ΠŸΡ€ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°Π½ΠΈΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠΉ:

    "This analysis is limited by the available data and may not generalize to all contexts."

  5. ΠŸΡ€ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹Ρ…:

    "These patterns could be interpreted as evidence of emergent properties, though alternative explanations remain possible."

Баланс Π² использовании хСдТирования:

Π’Π°ΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ баланс ΠΏΡ€ΠΈ использовании хСдТирования:

  • НСдостаточноС Ρ…Π΅Π΄ΠΆΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ самонадСянно, Π΄ΠΎΠ³ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎ ΠΈΠ»ΠΈ Π½Π΅Ρ‚ΠΎΡ‡Π½ΠΎ.
  • Π§Ρ€Π΅Π·ΠΌΠ΅Ρ€Π½ΠΎΠ΅ Ρ…Π΅Π΄ΠΆΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΡΠ»Π°Π±ΠΈΡ‚ΡŒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ ΠΈ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅ нСувСрСнности.

НаиболСС ΡƒΠ±Π΅Π΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ акадСмичСский тСкст ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ Ρ…Π΅Π΄ΠΆΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΌ, Π³Π΄Π΅ Π΅ΡΡ‚ΡŒ Ρ€Π΅Π°Π»ΡŒΠ½Π°Ρ Π½Π΅ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ, Π½ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ Π±ΠΎΠ»Π΅Π΅ ΡƒΠ²Π΅Ρ€Π΅Π½Π½Ρ‹Π΅ утвСрТдСния, Π³Π΄Π΅ это ΠΎΠΏΡ€Π°Π²Π΄Π°Π½ΠΎ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠΌΠΈΡΡ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°ΠΌΠΈ.

πŸ“± ΠžΠ±Ρ‰ΠΈΠ΅ совСты ΠΏΠΎ запоминанию

Π¦ΠΈΡ„Ρ€ΠΎΠ²Ρ‹Π΅ инструмСнты

 

  • Π‘ΠΎΠ·Π΄Π°ΠΉΡ‚Π΅ тСматичСский глоссарий Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ² искусствСнного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π° Π² ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Notion ΠΈΠ»ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠΉ систСмС Π·Π°ΠΌΠ΅Ρ‚ΠΎΠΊ, группируя слова ΠΏΠΎ ΠΏΠΎΠ΄Ρ‚Π΅ΠΌΠ°ΠΌ (машинноС ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅, этика ИИ, философия Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ)
  • Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ Π±Ρ€Π°ΡƒΠ·Π΅Ρ€Π°, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ подсвСчиваСт слоТныС слова Π½Π° англоязычных сайтах ΠΎΠ± искусствСнном ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚Π΅ с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ сохранСния ΠΈΡ… Π² ΠΏΠ΅Ρ€ΡΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΉ ΡΠ»ΠΎΠ²Π°Ρ€ΡŒ
  • Π‘Π»ΡƒΡˆΠ°ΠΉΡ‚Π΅ подкасты ΠΎΠ± ИИ ΠΈ тСхнологиях Π½Π° английском языкС (Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, "AI Alignment Podcast" ΠΈΠ»ΠΈ "Machine Learning Guide"), дСлая Π·Π°ΠΌΠ΅Ρ‚ΠΊΠΈ ΠΎ Π½ΠΎΠ²ΠΎΠΉ акадСмичСской лСксикС
  • ΠŸΠΎΠ΄ΠΏΠΈΡˆΠΈΡ‚Π΅ΡΡŒ Π½Π° рассылки спСциализированных ΠΈΠ·Π΄Π°Π½ΠΈΠΉ Π²Ρ€ΠΎΠ΄Π΅ MIT Technology Review, Ρ‡Ρ‚ΠΎΠ±Ρ‹ рСгулярно Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠΎ тСхнологиях Π½Π° английском языкС